Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Practical Geriatrics ; 36(12):1255-1258, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2320834

ABSTRACT

Objective: To explore the distribution and correlation of pathogens in the elderly patients with AECOPD, so as to guide the rational use of antibiotics and hormones in clinic. Methods: A total of 111 patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) admitted to Nanjing First Hospital from January 2019 to January 2020 were retrospectively analyzed. The basic data such as eosinophil, neutrophil and lymphocyte count, the levels of C-reactive protein(CRP) and erythrocyte sedimentation rate (ESR)in blood routine examination were collected. Further, the pathogens were qualified by sputum fluorescence quantitative polymerase chain reaction, and the pathogens distribution was analyzed. Results: The level of ESR and the ratio of cardiovascular diseases showed significant differences between the pathogen-positive group and pathogen-negative group. In this study, the top five pathogens in AECOPD patients were EB virus (21.6%), Haemophilus influenzae (19.8%), Streptococcus pneumoniae (17.1%), herpes simplex virus(14.4%), influenza A virus(14.4%). The detection rate of influenza A virus was correlated with influenza B virus and Aspergillus (P < 0.05);The detection rate of respiratory syncytial virus was correlated with Candida, Moraxella catarrholis, Streptococcus pneumoniae and Haemophilus influenzae (P < 0.05);The detection rate of Escherichia coli was correlated with rhinovirus, adenovirus, Klebsiella pneumoniae and Acinetobacter baumannii (P < 0.05);The detection rate of Candida was correlated with that of Moraxella catarrholis and Pseudomonas aeruginosa(P<0.05);The detection rate of human coronavirus was correlated with Haemophilus influenzae, herpes simplex virus and Streptococcus pneumoniae(P < 0.05). Conclusions: AECOPD are mostly induced by different pathogens, especially mixed infection of bacteria and virus. It is helpful to guide the rational use of antibiotics by analyzing the etiological characteristics in the elderly patients with AECOPD.

2.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; 12(6):444, 2022.
Article in Chinese | ProQuest Central | ID: covidwho-2204245

ABSTRACT

Objective To establish a reverse-transcription recombinase-aided amplification assay(RT-RAA) to rapidly detect SARS-CoV-2 sub-genomic RNAs(sgRNAs). Methods The primers and probe for isothermal nucleic acid amplification were designed based on the 5′-leader and 7a and N gene sequence of SARS-CoV-2, and the sgRNAs of SARS-COV-2 were rapidly detected within 30 min at 39 ℃.The sensitivity, specificity and consistency of the assay were evaluated. Results The detection limit of the method was 20 copies/μl and there were no cross-reactions with other respiratory pathogens, showing decent sensitivity and specificity.The results of the assay were concordant with that of real-time PCR, indicating a better consistency of two methods(κ=0.762,P<0.001). Conclusions The fluorescence RT-RAA assay established in the study can be used for the rapid detection of SARS-CoV-2 sgRNAs, which is of great significance for the rapid diagnosis of COVID 19.

3.
Front Microbiol ; 13: 1095739, 2022.
Article in English | MEDLINE | ID: covidwho-2199030

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.973367.].

4.
Front Microbiol ; 13: 973367, 2022.
Article in English | MEDLINE | ID: covidwho-2099183

ABSTRACT

Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy. The combination of the newly launched nanopore sequencing Q20+ kit (LSK112) and flow cell R10.4 is a qualitative improvement over the accuracy of the previous kits. In this study, we firstly used LSK112 kit with flow cell R10.4 to sequence the SARS-CoV-2 whole genome, and summarized the sequencing results of the combination of LSK112 kit and flow cell R10.4 for the 1200bp amplicons of SARS-CoV-2. We found that the proportion of sequences with an accuracy of more than 99% reached 30.1%, and the average sequence accuracy reached 98.34%, while the results of the original combination of LSK109 kit and flow cell R9.4.1 were 0.61% and 96.52%, respectively. The mutation site analysis showed that it was completely consistent with the final consensus sequence of next generation sequencing (NGS). The results showed that the combination of LSK112 kit and flow cell R10.4 allowed rapid whole-genome sequencing of SARS-CoV-2 without the need for verification of NGS.

5.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092699

ABSTRACT

Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy. The combination of the newly launched nanopore sequencing Q20+ kit (LSK112) and flow cell R10.4 is a qualitative improvement over the accuracy of the previous kits. In this study, we firstly used LSK112 kit with flow cell R10.4 to sequence the SARS-CoV-2 whole genome, and summarized the sequencing results of the combination of LSK112 kit and flow cell R10.4 for the 1200bp amplicons of SARS-CoV-2. We found that the proportion of sequences with an accuracy of more than 99% reached 30.1%, and the average sequence accuracy reached 98.34%, while the results of the original combination of LSK109 kit and flow cell R9.4.1 were 0.61% and 96.52%, respectively. The mutation site analysis showed that it was completely consistent with the final consensus sequence of next generation sequencing (NGS). The results showed that the combination of LSK112 kit and flow cell R10.4 allowed rapid whole-genome sequencing of SARS-CoV-2 without the need for verification of NGS.

6.
Cell Mol Immunol ; 18(6): 1602-1604, 2021 06.
Article in English | MEDLINE | ID: covidwho-1223085
7.
J Biomed Res ; 35(3): 216-227, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1219565

ABSTRACT

The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide, with the pathogenesis mostly unclear. Both virus and host-derived microRNA (miRNA) play essential roles in the pathology of virus infection. This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA. We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets. One of such virus-encoded miRNAs, MR147-3p, was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human, i.e., EXOC7, RAD9A, and TFE3 in the virus-infected cells. The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs. Additionally, the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets, suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution. This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection, indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.

8.
Signal Transduct Target Ther ; 6(1): 165, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1199266

ABSTRACT

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/metabolism , Computer Simulation , Drug Repositioning , Models, Biological , SARS-CoV-2/metabolism , Humans
10.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054610

ABSTRACT

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Subject(s)
COVID-19 Drug Treatment , Chitosan/analogs & derivatives , Coronavirus Infections/drug therapy , Middle East Respiratory Syndrome Coronavirus/drug effects , Quaternary Ammonium Compounds/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Chitosan/pharmacology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
11.
J Infect Dis ; 222(5): 746-754, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-990712

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated the serum cytokine and chemokine levels in asymptomatic, mild, moderate, severe, and convalescent SARS-CoV-2-infected cases. Proinflammatory cytokine and chemokine production induced by SARS-CoV-2 were observed not only in symptomatic patients but also in asymptomatic cases, and returned to normal after recovery. IL-6, IL-7, IL-10, IL-18, G-CSF, M-CSF, MCP-1, MCP-3, IP-10, MIG, and MIP-1α were found to be associated with the severity of COVID-19. Moreover, a set of cytokine and chemokine profiles were significantly higher in SARS-CoV-2-infected male than female patients. The serum levels of MCP-1, G-CSF, and VEGF were weakly and positively correlated with viral titers. We suggest that combinatorial analysis of serum cytokines and chemokines with clinical classification may contribute to evaluation of the severity of COVID-19 and optimize the therapeutic strategies.


Subject(s)
Chemokines/blood , Coronavirus Infections/blood , Cytokines/blood , Pneumonia, Viral/blood , Adult , Betacoronavirus/isolation & purification , COVID-19 , Chemokine CCL2/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Granulocyte Colony-Stimulating Factor/blood , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Vascular Endothelial Growth Factor A/blood , Viral Load
12.
Virology ; 549: 1-4, 2020 10.
Article in English | MEDLINE | ID: covidwho-684730

ABSTRACT

The current outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China firstly. A rapid, highly sensitive, specific, and simple operational method was needed for the detection of SARS-CoV-2. Here, we established a real-time reverse-transcription recombinase-aided amplification assay (RT-RAA) to detect SARS-CoV-2 rapidly. The primers and probe were designed based on the nucleocapsid protein gene (N gene) sequence of SARS-CoV-2. The detection limit was 10 copies per reaction in this assay, which could be conducted within 15 min at a constant temperature (39 °C), without any cross-reactions with other respiratory tract pathogens, such as other coronaviruses. Furthermore, compared with commercial real-time RT-PCR assay, it showed a kappa value of 0.959 (p < 0.001) from 150 clinical specimens. These results indicated that this real-time RT-RAA assay may be a valuable tool for detecting SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Genes, Viral , Nucleic Acid Amplification Techniques/methods , Nucleocapsid Proteins/genetics , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , China/epidemiology , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Nucleocapsid Proteins , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/statistics & numerical data , Recombinases , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
13.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-43489.v1

ABSTRACT

Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is currently a global pandemic, and there is a lack of laboratory studies targeting pathogen resistance.Objective To investigate the effect of selected disinfection products and methods on the inactivation of SARS-CoV-2.Methods We used quantitative suspension testing to evaluate the effectiveness of the disinfectant/method.Results Available chlorine of 250 mg/L, 500 mg/L, and 1000 mg/L required 20 min, 5 min, and 0.5 min to efficiently inactivate SARS-CoV-2, respectively. A 600-fold dilution of 17% concentration of di-N-decyldimethylammonium bromide (283 mg/L) and the same concentration of di-N-decyldimethylammonium chloride required only 0.5 min to efficiently inactivate the virus. Ethanol, at 30% concentration for 1 min, and 40% and above for 0.5 min, could efficiently inactivate SARS-CoV-2. Heat takes approximate 30 min at 56°C, or 10 min above 70°C, or 5 min above 90°C to inactivate the virus.Conclusions The chlorinated disinfectants, Di-N-decyldimethylammonium bromide / chloride, ethanol, and heat were effective in inactivating SARS-CoV-2. The response of SARS-CoV-2 to disinfectants is very similar to that of SARS-CoV.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
14.
Clinical Microbiology and Infection ; 2020.
Article | WHO COVID | ID: covidwho-276597

ABSTRACT

Objectives To evaluate the performance of an ultra-fast single-tube nucleic acid isothermal amplification detection assay for SARS-CoV-2 RNA using clinical samples from multiple centers. Methods A reverse transcription recombinase-aided amplification (RT-RAA) assay for SARS-CoV-2 was conducted within 15minutesat39°C with portable instruments after addition of extracted RNA. The clinical performance of RT-RAA assay was evaluated using 947 clinical samples from five institutions in four regions of China, and the approved commercial real-time fluorescent RT-PCR (qRT-PCR) kits were used for parallel detection. The sensitivity and specificity of RT-RAA were compared and analyzed. Results The RT-RAA test results of 926 samples were consistent with those of qRT-PCR (330 were positive, 596 were negative) and 21 were inconsistent. The sensitivity and specificity of RT-RAA was 97.63% [330/338, 95% confidence interval (CI): 95.21 to 98.90] and 97.87% (596/609, 95% CI: 96.28 to 98.81), respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 96.21% (330/343, 95% CI: 93.45 to 97.88), and 98.68% (596/604, 95% CI: 97.30 to 99.38), respectively. The total coincidence rate was 97.78% (926/947, 95% CI: 96.80 to 98.70) and the Kappa was 0.952 (P <0.05). Conclusion With comparable sensitivity and specificity to the commercial qRT-PCR kits, RT-RAA assay for SARS-CoV-2 exhibited distinctive advantages of simplicity and rapidity in terms of operation and turn-around time.

15.
Virology ; 546: 122-126, 2020 07.
Article in English | MEDLINE | ID: covidwho-186247

ABSTRACT

Since SARS-CoV-2 spreads rapidly around the world, data have been needed on the natural fluctuation of viral load and clinical indicators associated with it. We measured and compared viral loads of SARS-CoV-2 from pharyngeal swab, IgM anti-SARS-CoV-2, CRP and SAA from serum of 114 COVID-19 patients on admission. Positive rates of IgM anti-SARS-CoV-2, CRP and SAA were 80.7%, 36% and 75.4% respectively. Among IgM-positive patients, viral loads showed different trends among cases with different severity, While viral loads of IgM-negative patients tended to increase along with the time after onset. As the worsening of severity, the positive rates of CRP and SAA also showed trends of increase. Different CRP/SAA type showed associations with viral loads in patients in different severity and different time after onset. Combination of the IgM and CRP/SAA with time after onset and severity may give suggestions on the viral load and condition judgment of COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Immunoglobulin M/blood , Pneumonia, Viral/diagnosis , Viral Load , Adolescent , Adult , Aged , Betacoronavirus , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19 , Child , Coronavirus Infections/blood , Female , Humans , Male , Middle Aged , Pandemics , Pharynx/virology , Pneumonia, Viral/blood , SARS-CoV-2 , Serum Amyloid A Protein/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL